

Potential of a Variable Compression Ratio gasoline SI Engine with very high Expansion Ratio and Variable Valve Actuation

AUTHORS

Dr. Paul FERREY, MCE-5 DEVELOPMENT S.A. Yves MIEHE, MCE-5 DEVELOPMENT S.A. Vincent COLLEE, MCE-5 DEVELOPMENT S.A. Cyrille CONSTENSOU, MCE-5 DEVELOPMENT S.A.

KEYWORDS

VCR, VVA, Driving Cycle, Compression Ratio, Expansion Ratio, Miller, Atkinson, 3D combustion simulation, EIVC, squish, indicated efficiency, SI, gasoline, Downsizing, air management

ABSTRACT

Variable Compression Ratio (VCR) engine is seen as one of the next improvements of Spark Ignition (SI) engines. Regarding at the robustness of fuel consumption improvement of a technology though different Driving Cycles (NEDC, WLTC, Artemis, FTP, Real Driving Cycle...), the association of Variable Compression Ratio (VCR) engine with simple mechanical Variable Valve Actuation (VVA) is a promising solution for a "right sized" engine compared to highly downsized engines.

OD/1D GTPOWER[™] simulations show a clear potential when coupling VCR engine with simple VVA (VVT + continuous mechanical VVL) in order to optimize both Compression and Expansion Ratio through the engine map. The consumption benefit on driving cycle of the VCR-VVA association is superior to the sum of the benefits of VCR and VVA alone. These simulations also demonstrate the thermodynamic benefit of increasing the geometric Compression Ratio (>18:1) on a larger range of the engine map thanks to a lower effective Compression Ratio with VVA (Atkinson / Miller Cycle effect) compared to VVT strategies. 3D combustion simulations with IFP-C3D[™] have been used to design a high geometric Compression Ratio combustion chamber aimed at Early or Late Intake Valve Closing (EIVC - LIVC) strategies. The bowl design and especially the squish area are of high importance for wall thermal heat transfer and combustion efficiency. 3D combustion simulations show an indicated efficiency increase from 8 to 13% between Compression Ratio 18:1 and 10:1, in the range of 1500 to 2000rpm - 3 to 8bar IMEP. Single cylinder engine tests are in preparation to validate the simulations.

MCE-5 VCR-i engine is well suited for these strategies thanks to its large range of Geometric Compression Ratio (possibly from 8 or 9:1 to more than 20:1) and its specific individual cylinder actuation, as it controls high geometric Compression Ratios accurately. A BSFC value of 220g/kWh can be obtained with MCE-5 VCRi engine, VVA, single turbocharger and high geometric Compression Ratio, in the range 6- 10 bar BMEP / 1500-3000rpm.

The fuel consumption on various driving cycles is calculated on middle class vehicle (segment C - 1200kg kerb weight) with 3 cylinders engine of 80-90 kW equipped with VVA, single turbocharger and Start & Stop. It shows a fuel consumption reduction of 6% on WLTC v4 driving cycle between MCE-5 VCRi and 10:1 fixed Compression Ratio engines. Larger fuel consumption reductions up to 10% are expected for engines of larger sizes engine and higher brake powers.

SIA Powertrain Conference, Strasbourg (F), 2013

BIBLIOGRAPHY

D. Akihisa , D. Sawada - Toyota Motor Corporation. (2010). Research on Improving Thermal Efficiency through Variable Super-High Expansion Ratio Cycle. *SAE International 2010-01-0174.*

Heywood, J. B. (1988). Internal Combustion Engine Fundamentals.

M. Yamakawa, T. Youso, T. Fujikawa - Mazda Motor Corporation. (2011). Combustion Technology Development for a High Compression Ratio Engine. *SAE International 2011-01-1871.*